
AC – Item No. –

As Per NEP 2020

Tolani College of Commerce (Autonomous)

Title of the Course :<u>Digital Electronics</u> Programme: B.Sc(Information System) Semester-II

Syllabus for 2 credit Course

From the academic year-2024-2025

Sr. No.	Heading	Particulars		
1	Description of the course :	Digital electronics is the study of electronic circuits that are used to process and control digital signals.		
2	Vertical :	Minor		
3	Туре:	Theory and Practical		
4	Credit:	2 credits (1 Credit = Theory and 1 Credit = Project Work)		
5	Hours Allotted :	30 Hours		
6	Marks Allotted:	50 Marks Continuous Evaluation =20 Semester End =30		
7	 Course Objectives: 1. To understand the importance of various number system used in digital circuit, along with Boolean equations related to digital circuit. 2. To understand the role of K map in designing combinational circuits. 			
8	various number systems and its s	stand and examine the structure of torage and application in computer system. tand, analyses and design various		

INTOC	odule 1: Number System, Binary Arithmetic, Boolean Algebra and Logic Gates (15 Hours)			
•	Binary number system, octal number system, hexadecimal number system, conversion from or number system to another, weighted codes binary coded decimal, non-weighted codes Excess - code, Gray code Binary addition, Binary subtraction, Negative number representation, Subtraction using			
	complement and 2's complement, Binary multiplication and division, Arithmetic in octal nur system			
•	Introduction, Logic (AND OR NOT), Boolean theorems, Boolean Laws, De Morgan's Theorem Perfect Induction, Reduction of Logic expression using Boolean Algebra, Deriving Boolean expression from given circuit, exclusive OR and Exclusive NOR gates, Universal Logic gates, Implementation of other gates using universal gates			
	Iodule 2: Minterm, Maxterm Karnaugh Maps, Combinational Logic Circuits, Multiplexer, emultiplexer, ALU, Encoder and Decoder (15 Hours)			
DUI				
•	Reduction technique using Karnaugh maps $-2/3/4$ variable K-maps, Grouping of variables in			
•	 Introduction, minterms and sum of minterm form, maxterm and Product of maxterm for Reduction technique using Karnaugh maps – 2/3/4 variable K-maps, Grouping of variables in maps, K-maps for product of sum form, minimize Boolean expression using K-map and obtain map from Boolean expression. Introduction, Multi-input, multi-output Combinational circuits, Codeconverters design and implementations, Multiplexer, Demultiplexer, Decoder, ALU, Encoders 			

11	Reference Books: • Author: R.P Jain Title : Modern Digital Electronics Publisher: Mc Graw Hill, 5 th Edition, Yean 2022 • https://e-next.in/bsc-it/sem1/digital-electronics/					
12	Internal Continuous Assessment: 209	% Se	Semester End Examination : 30% Practical Assessment			
13	Continuous Evaluation through:	Practical				
14	Format of Question Paper:					
14	Sch Table 1A: Sche	neme of Evaluation Pa me of Continuous Ev neme of Evaluation Pa	valuation (CE/Practical)			
14	Sch Table 1A: Sche	me of Continuous Ev	valuation (CE/Practical)			
14	Sch Table 1A: Sche Sch	me of Continuous Ev neme of Evaluation Pa	raluation (CE/Practical) attern			
14	Sch Table 1A: Sche Sch Sub-components	me of Continuous Evolution Particle Maximum Marks	Conditions for passing			

Table 1B: Scheme of Semester End Examination (SEE) EvaluationQuestion Paper Pattern for Semester End Examination (SEE)Maximum Marks: 30Duration: I Hrs.

Note: All questions are compulsory. Each question has an internal choice.

Question Number		Nature of Questions	Maximum Marks
1)		bt any 3	
,	a)	·	15
	b)		
	c)		
	d)		
	e)		
2)	Attemp	ot any 3	
	a)		15
	b)		
	c)		
	d)		
	e)		