ANNEXTURE IV

Title of the Course: Introduction to Calculus

Syllabus for Two credit Course-From the Academic Year-2024-2025

Name of the Course: Mathematics Minor: Semester II-Introduction to Calculus

	Bachelor of Commerce (Management Studies)	
Programmes:	Bachelor of Commerce (Accounting & Finance)	
1 Togrammes.	Bachelor of Commerce (Banking & Insurance)	
	Bachelor of Commerce (Financial Markets)	
	Bachelor of Science (Information Technology)	

Sr.	Heading	Particulars	
No.			
1	Description of the course		
		"Introduction to Calculus" is a foundational course in	
		mathematics that introduces students to the fundamental	
		concepts of calculus, including limits, derivatives, and	
		integrals. It serves as a gateway to higher-level mathematics courses and is essential for understanding various quantitative	
		disciplines such as physics, engineering, economics, and	
		computer science.	
		Industries that heavily rely on quantitative analysis, such as	
		finance, engineering, and data science, have a high demand for	
		individuals proficient in calculus.	
2	Vertical:	Minor	
3	Туре:	Theory / Practical	
4	Credit:	2 Credits	
5	Hours Allotted:	30 Hours	
6	Marks Allotted:	50 Marks (20 (CE) + 30 (SE)	
7	Course Objectives:		
	1. Students should grasp the concept of limits and be able to evaluate limits algebraically an graphically.		
	2.Students should be able to apply differentiation to solve problems involving optimization,		
	related rates, and curve sketching.		

8	Course Outcomes:		
	1. Students will be able to compute limits of functions, understanding the concept of		
	continuity and its relationship to limits.		
	2. Students will understand the concepts of sequences and series, including convergence tests		
	for series, Taylor and Maclaurin series, and power series representations of functions.		
9	Modules:-		
	Module 1: Real Numbers and Sequences (15 Hours)		
	• The Algebraic and Order properties of R and Well Ordering Principle		
	• Absolute value and Real line, Absolute Value Functions And Its Properties, Triangle Inequality, Neighborhood Of A Point On The Real Line		
	 Sequences and their Limits, Definition And Examples Of Sequences Of Real Numbers, 		
	Uniqueness Of Limit, Bounded Sequence, Convergent Sequence		
	• Monotone Sequence, Definition And Examples, Monotone Convergence theorem and		
	examples		
	Module 2: Limits and Continuity (15 Hours)		
	• Functions and their graphs, Functions, Domain, Range, Graphs representing a function numerically, Vertical line Test		
	 Increasing and Decreasing functions, Even And Odd Functions with their examples Algebra of Limits, One Sided Limit, Infinite Limit 		
	• Continuous functions, Properties of continuous functions on an interval, Boundedness theorem, The Maximum-Minimum theorem		
10	Reference Books:		
	• Goldberg, R.R. Methods of Real Analysis. 1976.		
	• Apostol, T.M. Calculus. Wiley & Sons Pvt Ltd, 1975.		
	• Ghorpade, J.P., and Limaye. A Course in Calculus and Real Analysis. Springer		
	International Ltd, 2021.		
	• Kumar, Ajit, and Kumaresan. A Basic Course in Real Analysis. CRC Press, 2014.		
	• Narayan, Shanti, and Mittal. A Course in Mathematical Analysis. S. Chand and Co,		
	2005.		
	 Apostol, T.M. Calculus. Wiley & Sons Pvt Ltd, 1975. Ghorpade, J.P., and Limaye. A Course in Calculus and Real Analysis. Springer International Ltd, 2021. Kumar, Ajit, and Kumaresan. A Basic Course in Real Analysis. CRC Press, 2014. Narayan, Shanti, and Mittal. A Course in Mathematical Analysis. S. Chand and Co, 		

11	Internal Continuous Assessment: 40%	Semester End Examination: 60%
12	Continuous Evaluation through:	Assignments and Practical
13	Format of Question Paper: Q. 1 Attempt any Three (15 marks) a. b. c. d. Q. 2 Attempt any Three (15 marks) a. b. c. d. d.	